Persistent Infrared Hole Burning of Ammonium Stearate
نویسندگان
چکیده
منابع مشابه
Slow light with persistent hole burning
R. N. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs Instituut voor Kernen Stralingsfysica, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium Optique Nonlinéaire Théorique, Université Libre de Bruxelles, Campus Plaine CP 231, B-1050 Bruxelles, Belgium Kazan Physical Technical Institute, Russian Academy of Sciences, 10/7 Sibirsky trakt, Kazan 420029 Russia Physics ...
متن کاملPersistent spectral hole burning by simultaneous two-photon absorption
We show for the ®rst time persistent spectral hole burning by simultaneous absorption of two 1138 nm photons in an inhomogeneously broadened S1 S0 Qy transition of unstable photo-tautomer of chlorin in polymer ®lm at low temperature. Spectrally selective hole burning is achieved due to high (10%) quantum eciency of photo-transformation in that system and high peak intensity (tens of GW/cm) o...
متن کاملPersistent infrared spectral hole burning of NO; ions in potassium halide crystals. I. Priric9ple and satellite.holle generation
New features are resolved within the internal vibrational mode spectra of NO; defects in KCI, .: KBr, and KI crystals at 106 tetiperatures using high-resolution Fourier transform spectroscopy and persistent infrared spectral hole (PIRSH) burning separately and together. With interferometry it has been discovered that the vibrational linewidths of the different modes range over a factor of 300-f...
متن کاملOrigin of persistent hole burning of N - V centers in diamond
New satellite features and antiholes in the persistent hole-burning spectrum of N-V centers in diamond, as well as their dependences on applied electric fields and frequency within the inhomogeneous absorption line, are reported. These results, together with reassignments of spin states of this center, permit an understanding of the origin of the satellite holes as well as of possible mechanism...
متن کاملProgrammable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning.
Diode laser frequency stability of 2 kHz to 680 Hz over 20 ms to 500 s has been demonstrated at 1523 nm in the technologically important communication band by use of persistent spectral holes in the inhomogeneously broadened 4I15/2 --> 4I13/2 optical absorption of Er3+:D-:CaF2. Laser frequency stabilization was realized without vibrational or acoustical isolation of either the laser or spectral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry A
سال: 1997
ISSN: 1089-5639,1520-5215
DOI: 10.1021/jp9720193